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ABSTRACT

As data sets increase in size beyond the petabyte, it is increasingly
important to have automated methods for data analysis and visual-
ization. While topological analysis tools such as the contour tree
and Morse-Smale complex are now well established, there is still
a shortage of efficient parallel algorithms for their computation,
in particular for massively data-parallel computation on a SIMD
model. We report the first data-parallel algorithm for computing
the fully augmented contour tree, using a quantized computation
model. We then extend this to provide a hybrid data-parallel / dis-
tributed algorithm allowing scaling beyond a single GPU or CPU,
and provide results for its computation. Our implementation uses
the portable data-parallel primitives provided by Nvidia’s Thrust li-
brary, allowing us to compile our same code for both GPUs and
multi-core CPUs.

Index Terms: I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—Curve, surface, solid, and object rep-
resentations I.6.6 [Simulation and Modeling]: Simulation Output
Analysis;

1 INTRODUCTION

Modern computational science and engineering depends heavily on
ever-larger simulations of physical phenomena. Accommodating
the computational demands of these simulations is a major driver
for hardware advances, and has led to clusters with petaflops of
performance over hundreds of thousands of cores, with petabytes
of data storage. For recent hardware, the I/O cost of data storage
and movement dominates, and emphasis is increasingly placed on
in situ analysis and visualization of the data. Moreover, with clus-
ters built around Nvidia’s Tesla cards and Intel’s Xeon Phi boards,
we are seeing a return of SIMD (Single Instruction, Multiple Data)
computational models for shared-memory architectures.

In situ analysis and visualization in turn requires more sophis-
ticated analytic tools, as does the recognition that one component
of the pipeline remains unchanged: the human perceptual system.
This has stimulated research into areas such as computational topol-
ogy, which constructs models of the mathematical structure of the
data for the purposes of analysis and visualization.

One of the principal mathematical tools is the contour tree or
Reeb graph, which summarizes the development of contours in the
data set as the isovalue varies. Since contours are a key element of
most visualizations, the contour tree and the related merge tree are
of prime interest in automated analysis of massive data sets.

The value of these computations has been limited by the algo-
rithms available. While there is a well-established algorithm [5] for
computing merge trees and contour trees, the picture is patchier for
distributed and data-parallel algorithms. In particular, no pure data-
parallel algorithm has been described so far for contour tree compu-
tation, and the principal result in this paper is to do so for the first
time. However, pure data-parallelism is supplemented in practice
by hybrid data-parallelism, where individual nodes in a cluster are
data-parallel, but the overall computation is distributed between the
nodes. We therefore also describe an extension of the data-parallel
algorithm to a hybrid data-parallel algorithm.

We therefore begin by describing the relevant background both
in data-parallel computation and computational topology in Sec-
tion 2, before introducing a data-parallel algorithm for contour tree
computation in Section 3 and a hybrid distributed algorithm in Sec-

tion 4. We present some results on the scaling and performance of
these algorithms in Section 5, ending by drawing some conclusions
in Section 6.

2 BACKGROUND

Since the goal of this work is to use data-parallel computation to
construct an algorithm for contour tree computation, we therefore
divide the relevant prior work between data-parallel computation
on one hand and contour tree computation on the other. This divide
is not strict, since some work has been published on distributed and
parallel contour tree computation, but is a convenient division for
the sake of clarity.

2.1 Data-Parallel Computation
One effective method for taking advantage of the shared-memory
parallelism available on accelerators such as GPUs and multi-core
CPUs is to use data-parallelism. Guy Blelloch [3] defined a scan
vector model, and demonstrated that a wide variety of algorithms
in computational geometry, graph theory, and numerical computa-
tion could be implemented using a small set of “primitives”. These
primitive operators, such as transform, reduce, and scan, can each
be implemented in a constant or logarithmic number of parallel
steps. Nvidia’s open-source Thrust library provides an STL-like
interface for such primitive operators, with backends for CUDA,
OpenMP, Intel TBB, and serial STL. An algorithm written using
this model can utilize this abstraction to run portably across all sup-
ported multi-core and many-core backends, with the architecture-
specific optimizations isolated to the implementations of the data-
parallel primitives in the backends.

We have utilized Thrust in the PISTON and VTK-m projects, im-
plementing algorithms such as isosurfaces, cut surfaces, thresholds,
KD-trees, and halo finders [11, 17, 8]. Our halo finding algorithm
makes use of a data-parallel union-find algorithm, which most con-
tour tree algorithms depend on. Our Thrust implementation of this
algorithm, based on the parallel sparse connected components al-
gorithm presented in [10], is described in detail in [16]. The basic
strategy is to create a pseudoforest defined by a function D which
maps each vertex to its parent. Initially, each vertex is its own par-
ent. We then iteratively attempt to graft trees onto smaller vertices
of other trees, and then perform one level of pointer jumping on
each vertex. Once all vertices are in rooted stars (i.e., trees with
depth one or less), the algorithm terminates, with D now defining a
pseudoforest in which each connected component corresponds to an
independent tree. Assuming all edges or vertices can be processed
in parallel, each iteration takes constant time.

2.2 Contour Tree Computation
Given a function of the form f : Rd ! R, a level set is defined
as an inverse image f�1(h) for an isovalue h, and a contour is a
single connected component of a level set. The Reeb graph can
then be defined to be the result of contracting each contour to a
single point [15], and is well defined for Euclidean spaces or for
general manifolds. For simple domains, the graph is guaranteed to
be a tree, and is called the contour tree.

For data analysis, we normally assume that the domain is a mesh
- i.e. a tessellated subvolume of Rd , such as is used for numerical
simulation. For simplicial meshes in particular, all critical points
of the function are guaranteed to be at vertices of the mesh [2],
massively simplifying topological computations.

1



Online Submission ID: 134

For simplicial meshes over simple domains, the standard algo-
rithm [5] for computing contour trees performs a sorted sweep
through the data, incrementally adding all vertices to a union-find
data structure [18]. As components are created or merged in the
union-find, critical points are identified, and a partial contour tree is
created, called a merge tree. After performing both ascending and
descending sweeps through the data, the two resultant merge trees
are combined to produce the contour tree.

While this algorithm is simple and efficient, it is based on a
metaphor of a sweep through the contours which is inherently se-
quential, and this has hindered development of parallel algorithms.
Pascucci & Cole-McLaughlin [14] described a distributed compu-
tation in which the data is divided into spatial blocks. The contour
tree was computed separately for each block, then a fan-in process
combined the contour trees of individual blocks until a single mas-
ter node computed the entire contour tree.

In practice, contour trees have a significant memory footprint,
and, for noisy or complex data set, their size is nearly linear in input
size, which forces the contour tree for the entire data set to reside
on the master node, defeating one of the purposes of parallelisation:
distribution of cost both in computation and in storage.

More recently, Morozov & Weber [12] have proposed a method
for distributing a merge tree computation by observing that each
vertex in the mesh belongs to a unique component based at a single
root maximum, and to a corresponding component at a minimum.
Thus, by storing the location of each vertex in a merge tree, the
merge tree is held implicitly, distributed across the nodes of the
computation. They then generalized this further [13] and stored
unique maximal and minimal roots for each vertex. Since this com-
bination is unique for each edge of the contour tree, this implicitly
stores the contour tree across the nodes of the computation. These
algorithms, however, exploit distributed computing but not data-
parallelism, and do not extract arcs and nodes of the tree explicitly.

Notably, one of the advantages of this work is that instead of re-
lying on transferring all of the topology computed per block during
the fan-in, it only needs to transfer information relating to bound-
aries between blocks - i.e. its communication cost can be bounded
by O(n2/3) for a data set of size n.

Related to this, Widanagamaachchi et al [19] described a data-
parallel model for computing the merge tree, breaking the compu-
tation into a finite number of fan-in stages. This in effect quantized
the merge tree, an effect that was acceptable for the task in hand.

In addition to work on contour tree computation, some of the
work on Reeb graph and higher-dimensional topological computa-
tion is also relevant. In particular, Hilaga et al [9] quantized the
range of the function, explicitly dividing an input mesh into slabs
- i.e. the inverse image of intervals rather than of single isoval-
ues. They then identified the neighborhood relationships between
these slabs to approximate the Reeb graph of a 2-manifold. Since
these slabs are known in 3D as interval volumes [7], we will use
interval regions to describe them in any dimension, and interval
contours to describe their connected components. More recently,
Carr & Duke [4] generalized this with the Joint Contour Net, which
approximates the Reeb space [6] for higher dimensional cases by
quantizing all variables in the range.

3 PURE DATA-PARALLEL ALGORITHM

We can see from the foregoing discussion that, while a data-parallel
contour tree algorithm has not previously been described, many of
the pieces required for such an algorithm are now in place, such as
hybrid distributed/data-parallel structures and a reliable union-find
algorithm. The principal missing element, however, is a replace-
ment for the queue-based combination of merge trees on which
the standard algorithm [5] relies. Since this stage is essentially
sequential, replacing it is the principal concern in constructing a
data-parallel contour tree algorithm.

Rather than assume that a good data-parallel algorithm is nec-
essarily based on the corresponding serial algorithm, however, we
shall instead ask where the inherent parallelism in the problem is.
Clearly, this is not in the idea of an incremental sweep through the
data, or in a serialized queue for combining two merge trees.

Ideally, we would apply the mathematical definition of contract-
ing contours to single points [15]. Suppose that we have computed
a single level set with multiple contours for a given isovalue h in a
triangulation in 2D. To contract these contours, we note that each
is made up of a finite number of linear segments which we can rep-
resent as nodes in a graph. Moreover, since we are guaranteed a
continuous sequence of fragments, we can represent the connec-
tivity between them as edges in the same graph. This transforms
the question of contour contraction to a simple application of the
union-find algorithm [18], which now exists in data-parallel form.

In practice, however, we cannot perform this computation for
every possible contour, as this would require not just infinite paral-
lelism, but uncountably infinite parallelism, which even Blelloch’s
scan-vector model cannot accommodate. Instead, we observe that,
as with algorithms for quantized Reeb graphs [9] and Joint Contour
Nets [4], quantizing the range into intervals allows us to approxi-
mate the result with any degree of fidelity desired, while keeping
the computation bounded in practice.

Moreover, we note that this connectivity computation is indepen-
dent for any two contours or for the interval contours of any two in-
terval regions. We can therefore compute not just one set of interval
contours in parallel, but of all interval contours simultaneously.

This, however, merely performs the contraction, leaving a set of
points representing individual interval contours, without represent-
ing the vertical adjacencies between them. However, we note that
these adjacencies are the summation of local adjacencies between
individual fragments. Thus, if we take the set of all local adjacen-
cies between fragments and convert them to edges between their
corresponding union-find components, we can then suppress dupli-
cate edges to extract the contour tree desired.

We illustrate this process in Figure 1, showing detailed pseudo-
parallel code in Algorithm 1. In this algorithm, each significant step
is shown as a for loop with the understanding that these represent
data-parallel transformations of the input.

In Stage I (lines 1-4), we create fragments of each edge, divided
at integer multiples of a basic slab quantization parameter q. Here,
the name fragment is deliberately chosen to evoke rasterization, as
we are in fact performing 1-D rasterization of the intervals spanned
by each edge. These fragments are shown in darker colors in Figure
1 along the boundaries of the triangles. These fragments will form
the vertices for our union-find computation.

For Stage II (lines 5-15), any fragment at a slab value i on one
edge of a triangle must connect to all fragments at the same slab
value i on the other edges of the triangle. We can represent this by
pairing the longest (by value) edge with both other edges.

In Figure 1, we pair edge e1 with edges e0 and e5. Since e0,e5
are the shorter edges, we will end up with as many pairs as both
of them together have fragments - i.e. 2 and 1 in this instance.
We end up with a list of paired fragments in a horizontal array H
representing all horizontal connections between edge fragments.

Again considering the triangle with edges e0,e1,e5, these pairs
will be: ( f 0, f 2),( f 1, f 3),( f 11, f 3), representing the connectivity
across the middle of the cell by the contour interval. These will
form the edges for our union-find computation.

Since we have now defined both vertices and edges of a graph,
Stage III (lines 16-21) performs the Union-Find reduction to com-
pute connected components, and each component in the Union-
Find array UF represents one interval contour - i.e. one colored
band in Figure 1, with one of the fragments being used as the union-
find representative, as shown in red in the figure.

Stage IV (lines 23-28) copies the representatives to a new array

2



Online Submission ID: 134

Table 1

Sample computation for non-trivial data

This is a base-level sub-block, so we generate edges directly

Block 0:

v0 e0 v1 e3 v2

0 f0 f1 11 f7 f8 21 Slab Value

f10 f14 0 1 2

f4 Key: f0 f1 f6 Edge Fragment ID

f13 Edge Fragment

f2 Interior Interval Contour

e8 v0 v0 v0 Vertex ID

e2 e1 e5 f11 e4 f9 e0 e0 e0 Edge ID

f5

f12

f3

f6 f0 Union-Find Representative

20 f16 f15 10 f18 f17 1

v3 e9 v4 e12 v5

IA: Read data in from disk.

vertID 0 1 2 3 4 5

vertex_val 0 11 21 20 10 1

nRows 1

nCols 2

slabSize 10

IB: Edge fragment construction

IB1 Construct list of edges as pairs of vertices. Not all of these arrays need explicit computation.

edgeID 0 1 2 3 4 5 6 7 8 9 10 11 12

edgeVert[0] 0 0 0 1 1 1 . . 2 3 . . 4

edgeVert[1] 1 4 3 2 5 3 . . 5 4 . . 5

edgeMin 0 0 0 11 1 10 . . 1 10 . . 1

edgeMax 11 10 20 21 11 11 . . 21 20 . . 10

offset 0 0 0 1 0 1 . . 0 1 . . 0

nEdgeFrags 2 2 3 2 2 1 0 0 3 2 0 0 2

bEdgeFrags 0 2 4 7 9 11 12 12 12 15 17 17 17 19

IB3 Fill out edge-frag array

eFragID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

eFragEdge 0 0 1 1 2 2 2 3 3 4 4 5 8 8 8 9 9 12 12

eFragSlab 0 1 0 1 0 1 2 1 2 0 1 1 0 1 2 1 2 0 1

IC Generate a list of pairs of edges (two per triangle)

pairID 0 1 2 3 4 5 6 7

�1

Figure 1: Pure Data-Parallel Example. In this figure, the interval contours and edge fragments are color-coded by slab index (i.e. by quantization
interval). In the first stage of the algorithm, one vertex for each colored block is chosen as a union-find representative (in red). In the second
stage, vertical edges are computed. See text for details of worked computation.

and suppresses duplicates to get a single unique node for each entire
interval contour - i.e. representing nodes in the contour tree.

Finally, since all fragments are indexed, with each edge in as-
cending order, any pair fi, fi+1 of fragments are adjacent vertically
iff they belong to the same edge. Stage V (lines 29-36) therefore
takes all such pairs and finds their union-find representatives to de-
scribe an arc in the contour tree, with lines 35-36 suppressing du-
plicates to get unique representation.

To illustrate this, we show each stage in a data-parallel form in
Figure 2, using the data in Figure 1 as our running example.

In Stage I, we compute the fragments along each edge by finding
the minimum and maximum vertex values, then dividing the mini-
mum value by the quantization q to obtain the offset - i.e. the slab
index of the lowest fragment. This allows us to find fragments on
the edge efficiently later on. We then perform modular arithmetic
to determine how many fragments per edge in nEdgeFrags, and use
a prefix-sum to find the base index for fragments on each edge.

Note that our edge IDs are not contiguous - this is because we
will later need an easy way of doing reverse lookup from the edge
ID, and this is trivial if we have a systematic numbering system.
Here, edge 0mod3 is always horizontal, edge 1mod3 is diagonal,
and edge 2mod3 is vertical.

In Stage II, we again compute the number of pairs first, then
generate them for use as arcs in the Union-Find computation. For
example, the first pair (0,2) indicates that fragments 0 and 2 are
connected in the interval contour, and so on. We have omitted the
detailed calculations for clarity, and shown only the result.

In Stage III, we invoke the Union-Find computation using the
fragments from Stage I as nodes and the pairs from Stage II as
edges. We will see in the discussion of the hybrid algorithm that
which fragment we choose as Union-Find Representative is signif-
icant, but in the pure data-parallel algorithm we can choose any
fragment, and we have therefore chosen arbitrary fragments. At the
end of this stage, we can see that there is exactly one unique UF
representative for each interval contour in Figure 1.

Finally, in Stage IV, we use the Union-Find representatives again
to compute which interval contours are connected to each other by
finding vertical pairs along edges, converting these to Union-Find
representatives, sorting and suppressing duplicates to get the list of
arcs between nodes in the contour tree.

At the bottom of the figure, we build the contour tree from this set
of nodes and arcs to confirm that it is indeed the correct quantized
contour tree for the input data.

Algorithm 1 Pure Data Parallel Algorithm. All for statements are
executed data-parallel.
Require: Triangulation T , vertex values, slab quantization q

1: for all Edges e in I do

2: Divide e at isovalues nq for integer n
3: Store fragments in fragment array F
4: end for

5: for all Triangles t in I do

6: Find the longest edge e1 in t by value
7: Pair the longest edge with both other edges e2,e3
8: Store pairs (e1,e2),(e1,e3) in pair array P
9: end for

10: for all Pairs p = (e1,e2) in P do

11: for all Integer n such that nq is a value on e2 do

12: Divide (e1,e2) at nq
13: end for

14: Store all fragment pairs ( f1, f2) in horizontal array H
15: end for

16: for all Fragments f in F do

17: Initialise Union-Find array UF( f ) = f
18: end for

19: for all Pairs h = ( f1, f2) in H do

20: Add edge f1, f2 to Union-Find array UF
21: end for

22: Perform data-parallel Union-Find on UF
23: for all Fragments f in UF do

24: Find UF representative u =UF( f )
25: Store u in node array N
26: end for

27: Parallel Sort N
28: Remove duplicates in N
29: for all Fragments f in F do

30: if Fragment f on same edge e as next fragment g then

31: Find UF representatives u =UF( f ),g =UF(g)
32: Store arc a = (u,v) in arc array A
33: end if

34: end for

35: Parallel Sort A lexicographically on (u,v)
36: Remove duplicates in A
37: N,A now contain nodes & arcs of contour tree
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Stage Ia: Fragment Counting

edgeID 0 1 2 3 4 5 6 7 8 9 10 11 12
offset 0 0 0 1 0 1 . . 0 1 . . 0
nEdgeFrags 2 2 3 2 2 1 . . 3 2 . . 2
bEdgeFrags 0 2 4 7 9 11 12 12 12 15 17 17 17

Stage Ib: Fragment Generation

fragID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
fragEdge 0 0 1 1 2 2 2 3 3 4 4 5 8 8 8 9 9 12 12
fragSlab 0 1 0 1 0 1 2 1 2 0 1 1 0 1 2 1 2 0 1

Stage IIa: Edge Pair Counting

pairID 0 1 2 3 4 5 6 7
pairEdgeLong 0 0 2 2 8 8 4 4
pairEdgeShort 1 5 1 9 4 3 12 5
nPairFrags 2 1 2 2 2 2 2 1
bPairFrags 0 2 3 5 7 9 11 13

Stage IIb: Fragment Pair (Horizontal Edge) Generation

horizID 0 1 2 3 4 5 6 7 8 9 10 11 12 13
horizFrom 0 1 1 4 5 5 6 12 13 13 14 9 10 10
horizTo 2 3 11 2 3 15 16 9 10 7 8 17 18 11

Stage III: Union-Find Computation

fragID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
UF (initial) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
UF (final) 2 11 2 11 2 11 6 11 8 12 11 11 12 11 8 11 6 12 11
UF (sorted) 2 2 2 6 6 8 8 11 11 11 11 11 11 11 11 11 12 12 12
UF (unique) 2 6 8 11 12

Stage IV: Arc Computation

vertID 0 1 2 3 4 5 6 7 8 9
loFragment 0 2 4 5 7 9 12 13 15 17
hiFragment 1 3 5 6 8 10 13 14 16 18
loUFRep 2 2 2 11 11 12 12 11 11 12
hiUFRep 11 11 11 6 8 11 11 8 16 11
loUF (sorted) 2 2 2 11 11 11 11 12 12 12
hiUF (sorted) 11 11 11 6 6 8 8 11 11 11
loUF (unique) 2 11 11 12
hiUF (unique) 11 6 8 11

Computed Contour Tree:

8

11

6

2 12

Figure 2: Worked Example of Data-Parallel Contour Tree Computation. See text for discussion
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3.1 Algorithmic Complexity
As always with algorithmic development, it is necessary to analyze
the performance of the new algorithm. For data-parallel algorithms,
this is measured by considering the number of data parallel steps re-
quired under infinite parallelism [3]. In general, if an operation can
be performed without an expansion or reduction, it takes O(1) steps,
but if expansion or reduction is needed, it takes O(logn) steps.

Thus, for Stage I (lines 1-4) is essentially a sequence of algebraic
computations followed by constructing fragment array F . Figure 2
shows some more details, and we can see that the algebraic com-
putation takes O(1) steps, but construction of the array F to store
the fragments requires a prefix-sum followed by an expansion, and
takes O(logn f ) steps, where there are n f fragments overall.

Stage II (lines 5-15) follows a similar pattern, except for lines
11-13. Naı̈ve implementation of this stage would use a nested loop,
but can be replaced by reusing the set of fragment slab values for
the short edge to generated fragment pairs, resulting in an overall
O(logn f ) cost for the stage. Note that we use n f as the parameter
here, since each fragment can only occur in at most 2 pairs - one for
each incident triangle.

Stage III (lines 16-28) performs the Union-Find operation in
O(logn f ) steps, followed by parallel sort & duplicate suppression
in O(logn f ) further steps.

Stage IV (lines 29-36) then performs the arc extraction in
O(logn f ) steps, leading to an overall cost of (O(logn f )) parallel
steps. Provided the number of fragments per edge is small, this is
about as efficient as we are likely to achieve. Further studies on this
parameter could be performed, but previous work [4] indicates that
the number will be related to the gradient of the field, and will (on
average) be sub-linear. Even in the worst case, n f = O(N2), where
N is the number of input variables, and this still leads to O(log(N2))
parallel steps overall.

4 HYBRID DATA-PARALLEL ALGORITHM

Once we have computed a data-parallel contour tree, the next task
is to build a hybrid distributed version for larger data sets. For this,
we observe that each of the two principal stages of the pure data-
parallel algorithm described above can be parallelized by fanning in
computations to progressively larger blocks. For this to work, how-
ever, we need to limit data communication to a size proportional to
the boundaries of the data as with previous computations [12, 13].

We start with the interval contour contraction, and observe that
each interval contour is either contained entirely within the block or
intersects the boundary. If it is contained entirely within the block,
it cannot merge with interval contours in any other block, and there-
fore does not need to passed between blocks.

Interval contours that cross the boundary, however, will merge
with interval contours in other blocks, so we prepare for the fan-
in by selecting only those fragments that intersect the boundaries.
Unfortunately, this means that our array of fragments becomes non-
contiguous, which means we will have to renumber the fragments
in each parent block. To do so, we establish a unique identifier for
each fragment, composed of the global ID number of the edge to
which it belongs, combined with the index of the interval to which
it belongs. As with the serial version, our first step in the fan-in
will be to construct a single contiguous thrust-vector that lists all of
these fragments for union-find.

This in turn means that we need to guarantee that the represen-
tative of each union-find component is in the set passed to the par-
ent. We therefore perform the union-find so that fragments on the
boundary between blocks are used as the representative if possible,
tie-breaking with the global edge ID. This is applied separately at
each level of the fan-in, since a boundary fragment at a lower level
of the fan-in will normally become an interior element of a higher
block in the hierarchy.

We now observe that we are incrementally gluing together con-
tours in larger and larger blocks, at each stage discarding all inte-
rior contours, and limiting data communication to the size of the
boundary between blocks. At each level of the hierarchy, the prin-
cipal work is converting fragment and edge IDs from global to local
IDs, performing the union-find contraction, then converting back to
global IDs.

Once the process has completed at the root of the hierarchy, the
root node will have the correct union-find representatives for all of
the contours that cross boundaries of its immediate child nodes. To
ensure that all blocks have the correct union-find representatives,
we then fan this information back out, ensuring that each child node
has the correct global representative for each of its local represen-
tatives, and so on.

Once this fan-out is complete, the nodes have been correctly
identified, and we proceed to the vertical arcs between nodes.
Again, we perform this at the child blocks first, then fan-in to get
global information.

Here, we observe that these arcs can be of three types: interior-
interior, interior-boundary, or boundary-boundary. In the first case,
interior-interior, the arc connects two interval contours interior to
the block, and does not need to be passed to the parent. This is also
true in the second case: since one of the interval contours is interior,
it has no impact on connectivity in other blocks. This leaves only
the arcs connecting pairs of nodes on the block boundaries, which
we transmit to the parent. At each level, we suppress duplicates
and pass only boundary pairs to the parent, until the computation is
complete, at which point all children and parent blocks have identi-
fied all arc pairs in their interior and their boundaries.

5 RESULTS

An initial implementation of the algorithm described above has
been written for regular DEM (Digital Elevation Model) data (i.e.
for two-dimensional data).

For the on-node data-parallel algorithm described in Section 3,
we use Nvidia’s Thrust library. The transform, for each, reduce,
scan, sort, scatter, gather, and unique operators are used throughout
the algorithm, along with our custom functors. Union-find repre-
sentatives are found as described in Section 2.1, followed by an
additional step in which the requirement that the chosen represen-
tative be a fragment on the boundary if possible (with ties broken
by global edge ID) is satisfied by sorting the edge slabs by their
initial union-find representative, and then using a segmented scan
(inclusive scan by key) with a customized functor to find the cor-
rect representative for each group, followed by a segmented reverse
max-scan to propagate that representative ID back to all members
of the group, and finally a scatter to restore the array to its original
ordering. An example is shown in Figure 3 for how Thrust opera-
tors are used to generate a vector of fragments in Stage I of Figure 2.
One significant advantage of using a data-parallel algorithm imple-
mented using a portable library such as Thrust is that the exact same
code can run on all supported architectures, including GPUs (with
the CUDA backend) and multi-core CPUs (with the OpenMP and
TBB backends), while the serial backend can help make debugging
easier.

The hybrid algorithm described in Section 4 is implemented us-
ing MPI. Data that must be transferred during the fan-in and fan-out
stages is copied from Thrust device vectors (which may reside in
the memory of accelerators such as GPUs) to Thrust host vectors
on the CPU, which can then be passed to MPI using raw point-
ers. The input data is partitioned among the ranks according to a
domain decomposition with a specified block size, with the data
along boundaries shared between each pair of adjacent blocks.

Results of the data-parallel and hybrid algorithms were verified
against a quantized version of the standard serial algorithm [5].
Here, the serial algorithm was used to extract the contour tree, of
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// The number of fragments to be generated for each edge, taken as input for this example

nEdgeFrags 2 2 3 2 2 1 0 0 3 2 0 0 2

// Use a prefix sum to get the starting index for each edgeID in the new fragment vector

thrust::exclusive_scan(nEdgeFrags.begin(), nEdgeFrags.end(), bEdgeFrags.begin(), 0, thrust::plus<signed long>());

bEdgeFrags 0 2 4 7 9 11 12 12 12 15 17 17 17

// The total number of fragments is the starting index for the last edgeID, plus the number of fragments for that last edge

signed long numFrags = bEdgeFrags.back() + nEdgeFrags.back(); 

thrust::device_vector<signed long> fragEdge(numFrags, 0);

numFrags 19
fragEdge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

// For edges with at least one fragment, scatter the edge indices (from a counting iterator) to the indices in fragEdge specified by bEdgeFrags

thrust::scatter_if(thrust::make_counting_iterator(0), // Beginning of input indices (counting iterator not actually stored in memory)

                                thrust::make_counting_iterator(0)+nEdgeFrags.size(), // End of input indices

                                bEdgeFrags.begin(), // Indices to which to scatter the input

                                nEdgeFrags.begin(), // Only scatter input for which this stencil evaluates to true

                                fragEdge.begin(), // Beginning of output vector

                                threshold(0)); // Predicate applied to stencil vector 

counting_iterator 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
fragEdge 0 0 1 0 2 0 0 3 0 4 0 5 8 0 0 9 0 12 0

// Use a max-scan to propagate the edge id to the other fragments corresponding to each edge

thrust::inclusive_scan(fragEdge.begin(), fragEdge.end(), fragEdge.begin(), thrust::maximum<signed long>());

fragEdge 0 0 1 1 2 2 2 3 3 4 4 5 8 8 8 9 9 12 12

Figure 3: Code used to generate fragments from a vector containing the number of fragments to generate for each edge. This example illustrates
how parts of Stage I from Figure 2 are implemented using Thrust.

which the arcs were quantized with respect to the same slab size.
Any edge with exactly one fragment was discarded, as all of the
corresponding contours belonged to the same interval contour, and
would therefore be collapsed into a node rather than an arc. Any
edge with at least two fragments then generated one arc for each in-
terval boundary crossed. Although this does the quantization after
the contour tree computation, not before, it is not hard to show that
the result is the same as the algorithm described above.

Since slab, edge, and fragment ids are specific to individual im-
plementations and domain decompositions, results were compared
based on the number of edges in the contour tree proceeding out of
each slab. Results were verified in this way for a simple 3x3 test
case using 4 ranks (2x2 blocks, each of size 2x2), and for an 18x21
elevation data set for Vancouver, Canada, at quantization 5m (for
data in the range of 0 to 91m), using 1 rank, 9 ranks (3x3 blocks
of size 8x8), and 16 ranks (4x4 blocks of size 6x6). In cases where
the data size is not evenly divisible by the block size, the right-most
and/or bottom-most blocks were left undersized as needed.

We have also run scaling studies for our algorithms using a
4800x4800 chunk of data from the GTOPO30 database, which con-
tains elevation maps for the Earth at a horizontal grid spacing of 30
arc seconds (roughly one-half to one kilometer). The chunk we
used spans a topologically interesting region covering India and the
Himalayas. Tests were run on the Moonlight supercomputer at Los
Alamos National Laboratory. Each node has a 16-core 2.6 GHz
Intel Xeon E5-2670 CPU, 64 GB of RAM, and two Nvidia Tesla
M2090 GPUs (although we only used one per node in our tests).
A large quantization level (1000 m) was used to meet the mem-
ory constraints for tests run on a single node, and the contour trees
produced for this data set have not yet been independently vetted.
Our code is currently limited to on the order of 100,000,000 edge
fragments in the 64 GB of memory available per node, although
significant opportunities for optimizations in memory usage exist
(see Section 7). Scaling with the number of OpenMP threads, us-
ing Thrust’s OpenMP backend (along with our custom OpenMP

parallel backend for the scan operator, since Thrust provides only
a serial scan for OpenMP), is shown in Figure 4. Figure 5 shows
the scaling with the number of MPI ranks, with one rank per node,
up to 16 nodes. The same test was also run on the GPUs of 16
nodes, using the same code, by compiling to Thrust’s CUDA back-
end, with performance comparable in this case to the 16-node, 16-
thread OpenMP test (1.87 and 1.69 seconds, respectively). While
the OpenMP scaling tails off after around 4 threads on these 16-
core machines, the scaling with the number of nodes does well up
to at least 16 nodes, as the amount of communication necessary in
the hybrid algorithm is relatively small (only data at the boundaries
between blocks).

We were also able to compute the contour tree for this data set
at a quantization of just 10m by running it across 64 nodes on
Moonlight with OpenMP, with one rank per node and block sizes
of 601x601, in 29.2 seconds. Using the GPUs, in about 10.6 sec-
onds, we were able to compute the contour tree at a quantization of
50m (smaller quantizations exceeded the memory constraints of the
GPUs).

6 CONCLUSIONS

We have presented the first algorithm for computing contour trees
using a quantized approach that exploits both shared-memory data-
parallelism and distributed-memory domain decomposition paral-
lelism. Our initial implementation of this method, using Nvidia’s
Thrust library and MPI, has been used to verify the correctness of
the algorithm for small data sets, and to demonstrate its parallel
scaling with larger data sets. This work lays the foundation for
using contour trees as a tool for automatically finding contours of
interest in massive data sets.

7 FUTURE WORK

The current initial implementation of the algorithm uses many in-
termediate vectors for the sake of simplicity and clarity, but the
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Figure 4: Data-parallel scaling on a single node (log-log plot), for a
4800x4800 chunk of elevation data in India and the Himalayas from
GTOPO30 at quantization 1000m.
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Figure 5: Hybrid scaling across nodes (log-log plot), for a 4800x4800
chunk of elevation data in India and the Himalayas from GTOPO30
at quantization 1000m.

memory footprint could likely be significantly decreased by opti-
mally reusing allocated vectors. More work is also needed to verify
the results for very large data sets, such as those from GTOPO30.
We believe that it is possible to extend the post facto quantization
of the serially computed contour tree to obtain the exact fragment
representatives, &c. so that validation of the computation may be
performed automatically.

Thereafter, the secondary computations such as geometric sim-
plification of the contour tree, bounding hierarchy extraction, sin-
gle contour extraction, and so forth, still need to be implemented.
These steps are of particular interest within in-situ frameworks such
as the Cinema image database [1], as they are necessary for auto-
mated feature selection.

Moreover, while the current version is written on the assump-
tion of a 2D DEM (the easiest case to implement), all that would
need changing for an arbitrary tessellation would be to use hashing
or other reverse lookup techniques in all of the places where we
use modular arithmetic to compute edge & fragment IDs. Equally,

since tetrahedra can be quantized into planar interval contours in the
same way as triangles, the algorithm will naturally extend to tetra-
hedral meshes at the cost of some additional book-keeping. Further
development for non-simplicial meshes should also be possible.

We also note that, unlike the original contour tree algorithm, this
version naturally handles Reeb graph computation as well, and we
would like to implement and test this for 2�mani f old surfaces and
non-simple meshes as well. Variations on the approach described
may also allow Morse-Smale Complex extraction as well, but this
is purely speculative at present.
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